dec test revision

- [SQA] 1. (a) Express $f(x) = x^2 4x + 5$ in the form $f(x) = (x a)^2 + b$.
 - (b) On the same diagram sketch:
 - (i) the graph of y = f(x);
 - (ii) the graph of y = 10 f(x).
 - (c) Find the range of values of x for which 10 f(x) is positive.
- [SQA] 2. The diagram shows a sketch of the function y = f(x).
 - (a) Copy the diagram and on it sketch the graph of y = f(2x).
 - (b) On a separate diagram sketch the graph of y = 1 f(2x).

2

4

- [SQA] 3. Differentiate $\sin 2x + \frac{2}{\sqrt{x}}$ with respect to x.
- [SQA] 4. Find the coordinates of the point on the curve $y = 2x^2 7x + 10$ where the tangent to the curve makes an angle of 45° with the positive direction of the *x*-axis.
- [SQA] 5. Find the *x*-coordinate of each of the points on the curve $y = 2x^3 3x^2 12x + 20$ at which the tangent is parallel to the *x*-axis.
- [SQA] 6. (a) f(x) = 2x + 1, $g(x) = x^2 + k$, where k is a constant.

(i) Find
$$g(f(x))$$
. (2)

(ii) Find
$$f(g(x))$$
. (2)

- (b) (i) Show that the equation g(f(x)) f(g(x)) = 0 simplifies to $2x^2 + 4x k = 0.$ (2)
 - (ii) Determine the nature of the roots of this equation when k = 6. (2)
 - (iii) Find the value of k for which $2x^2 + 4x k = 0$ has equal roots. (3)

7. Show that the equation $(1-2k)x^2-5kx-2k=0$ has real roots for all integer [SQA] values of k.

5

8. When $f(x) = 2x^4 - x^3 + px^2 + qx + 12$ is divided by (x - 2), the remainder is 114. [SQA] One factor of f(x) is (x+1). Find the values of p and q.

5

9. Given that $\tan \alpha = \frac{\sqrt{11}}{3}$, $0 < \alpha < \frac{\pi}{2}$, find the exact value of $\sin 2\alpha$. [SQA]

3

- 10. [SQA]
- (a) Show that $2\cos 2x^{\circ} \cos^2 x^{\circ} = 1 3\sin^2 x^{\circ}$.

2

4

(b) Hence solve the equation $2\cos 2x^{\circ} - \cos^2 x^{\circ} = 2\sin x^{\circ}$ in the interval 0 < x < 360.

5

11. Solve $2\cos 2x - 5\cos x - 4 = 0$ for $0 \le x < 2\pi$.

4

12. A is the point (2, -5, 6), B is (6, -3, 4) and C is (12, 0, 1). Show that A, B and C [SQA] are collinear and determine the ratio in which B divides AC.

13. [SQA] Relative to the axes shown and with an appropriate scale, P(-1, 3, 2) and Q(5, 0, 5) represent points on a road. The road is then extended to the point R such that $\overrightarrow{PR} = \frac{4}{3}\overrightarrow{PQ}$.

(a) Find the coordinates of R.

(3)

(b) Roads from P and R are built to meet at the point S(-2, 2, 5). Calculate the size of angle PSR.

(7)

X